3D domain swapping, protein oligomerization, and amyloid formation.

نویسنده

  • M Jaskólski
چکیده

In 3D domain swapping, first described by Eisenberg, a structural element of a monomeric protein is replaced by the same element from another subunit. This process requires partial unfolding of the closed monomers that is then followed by adhesion and reconstruction of the original fold but from elements contributed by different subunits. If the interactions are reciprocal, a closed-ended dimer will be formed, but the same phenomenon has been suggested as a mechanism for the formation of open-ended polymers as well, such as those believed to exist in amyloid fibrils. There has been a rapid progress in the study of 3D domain swapping. Oligomers higher than dimers have been found, the monomer-dimer equilibrium could be controlled by mutations in the hinge element of the chain, a single protein has been shown to form more than one domain-swapped structure, and recently, the possibility of simultaneous exchange of two structural domains by a single molecule has been demonstrated. This last discovery has an important bearing on the possibility that 3D domain swapping might be indeed an amyloidogenic mechanism. Along the same lines is the discovery that a protein of proven amyloidogenic properties, human cystatin C, is capable of 3D domain swapping that leads to oligomerization. The structure of domain-swapped human cystatin C dimers explains why a naturally occurring mutant of this protein has a much higher propensity for aggregation, and also suggests how this same mechanism of 3D domain swapping could lead to an open-ended polymer that would be consistent with the cross-beta structure, which is believed to be at the heart of the molecular architecture of amyloid fibrils.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proline Residues as Switches in Conformational Changes Leading to Amyloid Fibril Formation

Here we discuss studies of the structure, folding, oligomerization and amyloid fibril formation of several proline mutants of human stefin B, which is a protein inhibitor of lysosomal cysteine cathepsins and a member of the cystatin family. The structurally important prolines in stefin B are responsible for the slow folding phases and facilitate domain swapping (Pro 74) and loop swapping (Pro 7...

متن کامل

3D domain swapping: as domains continue to swap.

Three-dimensional (3D) domain swapping creates a bond between two or more protein molecules as they exchange their identical domains. Since the term '3D domain swapping' was first used to describe the dimeric structure of diphtheria toxin, the database of domain-swapped proteins has greatly expanded. Analyses of the now about 40 structurally characterized cases of domain-swapped proteins reveal...

متن کامل

Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I.

Amyloid fibrils are associated with >20 fatal human disorders, including Alzheimer's, Parkinson's, and prion diseases. Knowledge of how soluble proteins assemble into amyloid fibrils remains elusive despite its potential usefulness for developing diagnostics and therapeutics. In at least some fibrils, runaway domain swapping has been proposed as a possible mechanism for fibril formation. In run...

متن کامل

Characterization of high-order diphtheria toxin oligomers.

In 3D domain swapping, a domain of a protein breaks its noncovalent bonds with the protein core and its place is taken by the identical domain of another molecule, creating a strongly bound dimer or higher order oligomer. For some proteins, including diphtheria toxin, 3D domain swapping may affect protein function. To explore the molecular basis of 3D domain swapping in a well-characterized pro...

متن کامل

Amyloid-like fibrils from a domain-swapping protein feature a parallel, in-register conformation without native-like interactions.

The formation of amyloid-like fibrils is characteristic of various diseases, but the underlying mechanism and the factors that determine whether, when, and how proteins form amyloid, remain uncertain. Certain mechanisms have been proposed based on the three-dimensional or runaway domain swapping, inspired by the fact that some proteins show an apparent correlation between the ability to form do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2001